
Designing Interactive Systems II - Summer Semester 2010
Assignment 3: Now You See Me, Now You Don’t

Due: Monday, May 17, 2010 @10:00 AM

In this assignment, you will continue to build upon your Window System from the last
assignment by adding features to draw windows, their window dressing and some basic
event handling. As the primary goal of the exercise is for you to better understand the
four-layered windowing system architecture discussed in the lectures, be sure to think
about where each feature should go (Base Window System, Window Manager or Appli-
cation in this exercise). A significant portion of your grade for this assignment will be
based on how faithfully you separate out the functionality into these windowing system
layers.

Window System

Start by expanding your WindowSystem class so that applications can make use of your
windows, and so that your windows will be shown on the screen. To accomplish this, you
will need to add the following features:

• Allow applications to create SimpleWindow’s that are associated with a
WindowSystem.

• Display SimpleWindow’s on your “desktop” when they are created.

The drawing here should be kept very basic – windows should be drawn as simple, solid
boxes in some colour (e.g. grey) against the desktop, which should be drawn in some
other colour (e.g. black). Any fancy window dressing (should you choose to implement
any) should be saved for the window manager (see next part).

You may find the following methods in GraphicsEventSystem useful:

• void handlePaint()

• void drawLine(int inStartX, int inStartY, int inEndX, int inEndY)

• void drawRect(int inX, int inY, int inWidth, int inHeight)

• void fillRect(int inX, int inY, int inWidth, int inHeight)

• void setColor(Color inColor)

• void requestRepaint(Rectangle rect)

• void drawString(String str, int x, int y)

• Font getFont()

• void setFont(Font font)



You will need to override the handlePaint() in your WindowSystem class, and
do all of your drawing in there. The handlePaint() method is inherited from
GraphicsEventSystem, and currently does nothing. You can force the system to refresh
a certain area of the desktop by calling requestRepaint().

Again, we leave the design and implementation details up to you. For example, think
about how developers coding an application will create a new window – will they call a
method in WindowSystem which returns a new SimpleWindow object, or will they create
SimpleWindow objects and then add them to a WindowSystem? There is no right answer
here, although you may find some solutions are more elegant than others.

Window Manager

In this next part, you will implement a basic window manager that adds mouse input.
In particular, you should implement a WindowManager class which adds a titlebar and a
close button to all windows. The basic features your window manager should have are:

• Show a titlebar and close button for each window.

• Allow the user to move a window by dragging it around.

• Allow the user to close a window by clicking on the close button.

Again, you will have to make some design trade-offs here. For example, should the
“window dressings” (titlebar, etc...) be drawn as part of the window or surrounding it?
If they are drawn within the window, it makes moving the window easier, but take up
valuable screen real-estate from the application; if they are drawn outside the bounds of
the window, they will have to exist as separate SimpleWindows, and be moved together
when the window is moved.

You may find the following methods in GraphicsEventSystem useful:

• void handleMouseClicked(int x, int y)

• void handleMousePressed(int x, int y)

• void handleMouseReleased(int x, int y)

• void handleMouseMoved(int x, int y)

• void handleMouseDragged(int x, int y)

Keep in mind that you may need to convert the coordinates before passing the events to
higher layers.

Extend your MyApp program from last week so that it creates three windows and allows
the user to drag them around and close them.



Testing Your Understanding

Answer the following questions:

1. Briefly describe and justify any design choices you made (if any) in your
WindowSystem class.

2. Briefly describe and justify any design choices you made (if any) in your
WindowManager class.

Extra Credit

Implement more bells and whistles to your window system/window manager. Sample
“extra features” are given below, but feel free to use your imagination and come up with
your own. Each bonus “feature” will get you a 0.3 bonus, up to a maximum of 0.9:

• Window re-ordering (e.g. clicking on the title-bar brings the window to the front).

• Fancier window dressing (border around the window, some decoration).

• Interactive window resizing by clicking on a window corner and/or edge and drag-
ging.

• Minimizing a window to an icon.

Be sure to document which features you implemented in your README.pdf.

Submission

Make sure that you only use functions that are available across platforms such that your
submission runs on the lab machines.

Email a ZIP archive of your assignment to dis2 submissions@cs.rwth-aachen.de

before the due date. The ZIP-file should be named
〈lastnamegroupmember1 lastnamegroupmember2〉.zip where you fill in your last
names. The subject of your email should be “DIS2 Assignment 3”; be sure to use this
exact subject line as it will be used to filter assignment submissions for grading.

Your assignment archive should include your source code and everything necessary to
compile and run your program. Be sure to document your source code. Include a short
PDF document README.pdf that contains:

• names and email addresses of all group members

• instructions on how to compile and run your source code

• answers to the questions (see Testing Your Understanding)

• non-obvious things you did in your code (if any)



• anything that you think makes your design particularly optimized and/or elegant

Be prepared to discuss your solution in the next lab.

Grading

The assignment will be graded on the following rough scale:

• 1.0 - exceptional work that clearly went above and beyond what was given on the
exercise

• 2.0 - exercise was completed satisfactorily as per the assignment specification

• 3.0 - exercise was completed, but has some problems

• 4.0 - incomplete exercise

• 5.0 - little or no effort was put into the exercise

Late assignments will not be graded.


